6 research outputs found

    Total Directional Variation for Video Denoising

    Get PDF
    In this paper, we propose a variational approach for video denoising, based on a total directional variation (TDV) regulariser proposed in Parisotto et al. (2018), for image denoising and interpolation. In the TDV regulariser, the underlying image structure is encoded by means of weighted derivatives so as to enhance the anisotropic structures in images, e.g. stripes or curves with a dominant local directionality. For the extension of TDV to video denoising, the space-time structure is captured by the volumetric structure tensor guiding the smoothing process. We discuss this and present our whole video denoising work-flow. Our numerical results are compared with some state-of-the-art video denoising methods.SP acknowledges UK EPSRC grant EP/L016516/1 for the CCA DTC. CBS acknowledges support from Leverhulme Trust project on Breaking the non-convexity barrier, EPSRC grant Nr. EP/M00483X/1, the EPSRC Centre EP/N014588/1, the RISE projects CHiPS and NoMADS, the CCIMI and the Alan Turing Institute

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results
    corecore